# ST. JOSEPH'S DEGREE COLLEGE, SUNKESULA ROAD, KURNOOL. DEPARTMENT OF MATHEMATICS <br> <br> CERTIFICATE COURSE 

 <br> <br> CERTIFICATE COURSE}

## COURSE DETAILS:

| Title of the Paper | $:$ | MSc., Entrance Coaching |
| :--- | :--- | :--- |
| Subject | $:$ | Mathematics |
| Course Level | $:$ | Under graduate |
| Course Duration | $:$ | 8 WEEKS |
| Faculty Members | $:$ | 1. B.Lakshmanna |
|  |  | 2. Dr.T.Mohan Reddy |
|  | 3. A. Sarala Kumari |  |
|  | 4. S.Shahanaz Begum |  |
|  | 5. S.Ajay Kumar |  |
|  | 6. B.Chandra Sekhar |  |
|  | 7. P.Vidya Lakshmi |  |

## Course Layout :

| Week 1 | $:$ | Ordinary Differential Equations \& Partial Differential Equations |
| :--- | :--- | :--- |
| Week $\mathbf{2}$ | $:$ | Three Dimensional Solid Geometry |
| Week3 \& 4 | $:$ | Abstract Algebra and Linear Algebra |
| Week $\mathbf{5}$ \& 6 | $:$ | Ring theory and Vector Calculus |
| Week 7 | $:$ | Real Analysis. |
| Course Type | $:$ | Certificate course |
| Start Date | $:$ | $21-01-2019$ |
| End Date | $:$ | $20-03-2019$ |
| Exam Date | $:$ | $23-03-2019$ |

# ST. JOSEPH'S DEGREE COLLEGE, SUNKESULA ROAD, KURNOOL. PG ENTRANCE SYLLABUS MATHEMATICS 

## UNIT: I Ordinary Differential Equations

Differential equations, integrating factors, Bernoulli's equation, exact differential equations, necessary and sufficient conditions for exactness, symbolic operators, homogeneous and nonhomogeneous linear differential equations with constant coefficients and those reducible to such equations, Miscellaneous forms of differential equations, first order higher degree equations solvable for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{P}$ equations from which one variable is explicitly absent, Clairut's form, equations reducible to Clairut's form,
Partial Differential Equations: Formation of partial differential equations, order and degree of partial differential equations, concept of linear and non-linear partial differential equations, linear partial differential equation of first order, Lagrange's method, Geometrical interpretation of the form $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$, Charpit's method

## UNIT: II Three Dimensional Solid Geometry

General equation of second degree. Tracing of conics. Tangent at any point to the conic, chord of contact, pole of line to the conic, director circle of conic. System of conics. Confocal conics. Polar equation of a conic, tangent and normal to the conic. Sphere: Plane section of a sphere. Sphere through a given circle. Intersection of two spheres, radical plane of two spheres. Cooxal system of spheres. Cones. Right circular cone, enveloping cone and reciprocal cone. Cylinder: Right circular cylinder and enveloping cylinder

## UNIT III: Abstract Algebra and Linear Algebra

Definition of a group with example and simple properties of groups, Subgroups and Subgroup criteria, Generation of groups, cyclic groups, Cosets, Left and right cosets, Index of a subgroup Coset decomposition, Lagrange's theorem and its consequences, Normal subgroups, Quotient groups. Homomorphism, isomorphism, auto morphism and inner auto morphism of a group. Auto morphism of cyclic groups, Permutations groups. Even and odd permutations. Alternating groups, Cayley's theorem, Centre of a group and derived group of a group
Vector spaces, subspaces, Sum and Direct sum of subspaces, Linear span, Linearly Independent and dependent subsets of a vector space. Finitely generated vector space, Existence theorem for basis of a finitely generated vector space, Finite dimensional vector spaces, Invariance of the number of elements of bases sets, Dimensions, Quotient space and its dimension. Homomorphism and isomorphism of vector spaces, Linear transformations and linear forms on vector spaces, Vector space of all the linear transformations Dual Spaces, Bi dual spaces, annihilator of subspaces of finite dimensional vector spaces, Null Space, Range space of a linear transformation, Rank and Nullity Theorem.
Eigen values and Eigen vectors of linear transformations. Inner product spaces, CauchySchwarz inequality, Orthogonal vectors, Orthogonal complements, Orthogonal sets and Basis, Bessel's inequality for finite dimensional vector spaces, Gram-Schmidt, Orthogonalization process.

## UNIT: IV Ring theory and Vector Calculus

Introduction to rings, subrings, integral domains and fields, Characteristics of a ring. Ring homomorphism's, ideals (principle, prime and Maximal) and Quotient rings, Field of quotients of an integral domain. Euclidean rings, Polynomial rings, Polynomials over the rational field, The Eisenstein's criterion, Polynomial rings over commutative rings, Unique factorization domain
Scalar and vector product of three vectors, product of four vectors. Reciprocal vectors. Vector differentiation. Scalar Valued point functions, vector valued point functions, derivative along a curve, directional derivatives. Gradient of a scalar point function, geometrical interpretation of grad., character of gradient as a point function. Divergence and curl of vector point function, characters of Div. and Curl as point function, examples. Gradient, divergence and curl of sums and product and their related vector identities. Laplacian operator. Orthogonal curvilinear coordinates Conditions for orthogonality fundamental triad of mutually orthogonal unit vectors. Gradient, Divergence, Curl and Laplacian operators in terms of orthogonal curvilinear coordinates, Cylindrical co-ordinates and Spherical co-ordinates. Vector integration; Line integral, Surface integral, Volume integral. Theorems of Gauss, Green \& Stokes and problems based on these theorems.

## UNIT: V Real Analysis

Boundedness of the set of real numbers; least upper bound, greatest lower bound of a set, neighbourhoods, interior points, isolated points, limit points, open sets, closed set, interior of a set, closure of a set in real numbers and their properties. Bolzano-Weiestrass theorem, Open covers, Compact sets and Heine-Boral Theorem. Sequence: Real Sequences and their convergence, Theorem on limits of sequence, Bounded and monotonic sequences, Cauchy's sequence, Cauchy general principle of convergence, Subsequence's, Sub sequential limits. Infinite series: Convergence and divergence of Infinite Series, Comparison Tests of positive terms Infinite series, Cauchy's general principle of Convergence of series, Convergence and divergence of geometric series, Hyper Harmonic series or p-series. Infinite series: DAlembert's ratio test, Raabe's test, Logarithmic test, de Morgan and Bertrand's test, Cauchy's Nth root test, Gauss Test, Cauchy's integral test, Cauchy's condensation test. Alternating series, Leibnitz's test, absolute and conditional convergence, Arbitrary series: Abel's lemma,

## Request Letter

## Date:04-01-2019,

Kurnool.
To
Dr.C. V. Satya Narayana
SJCOAC Coordinator,
St. Joseph's Degree College,
Kurnool-518004.
Respected sir,
The Department of Mathematics would like to introduce Certificate Course on "M.Sc. Maths Entrance exam" for $3^{\text {rd }}$ year mathematics students. The course duration will be 45 hours. In this regard, I request you to grant permission to go ahead with our proceedings.

Thanking you sir,
ypaccery


Dr.T. Mohan Reddy, Head of the Department, Department of Mathematics St. Joseph's Degree College, Kurnool.

## Circular

Date: 06--01-2019,
Kurnool.
Dear Students,
The Department of Mathematics is going to give "MSc Entrance coaching" for all final year mathematics students. It is proposed to conduct classes from $21^{\text {st }}$ January 2019. This is a certificate course which is about to have 8 weeks. This coaching is very useful to crack entrance exam and can enhance your preparation strategy. So I request all students to make use of this opportunity. For further information, visit department of Mathematics.

Thanking you,


Dr.T. Mohan Reddy, Head of the Department, Department of Mathematics St. Joseph's Degree College, Kurnool.




## Students List:

|  |  |  | Email ID | Signature |
| :---: | :---: | :---: | :---: | :---: |
| Name of the Student | Class | Mobile No |  | M. Yamunadur |
| m. Yamuna devi | III mscs | 7032541910 | Yamunadevi98765@gmail | K. Sxidiuya |
| K. Sridivya | III mses | 9059214360 | Sridinya97033@gmail | B. Supriya |
| B Supriya | III mses | 9121465806 | brontala Supriy | $V$ Aishwa |
| $\checkmark$. Aishwary a | III MSCS | 6302127697 | aishwaryavankadari 6 gi | $N$ Varplakshmi |
| N. Varalakshmi | III mscs | 863971314.8 | et nalla pativara 1998 © neelimabail008@gmail.c | $V$ Neetima Bai |
| v. Neelima Bai | III MSCS | 9182718608 | maulakshni 3953@ gmail.co | M. Jayalakshmi |
| M. Jayalakshmi | III MSCs | 6281663848 | Kammarigarathris1221@gmail. | *Gayath: |
| K. Gayathsi | III MSC3 | 7993936354 | Kammarigayathris1221@gmail.co sankatiswarna@gmail-com | \$8xucurnalatha |
| S. Swarnalatho | II. Msas | 9441264228 |  | s.Ramani |
| S.Ramani | III-MSCS | 9705286458 9121443306 | satarlaramani1999@gmail.com vineelaraj2711@ Jmail.com | sine |
| Sivineela | IT-Mses | 9121443306 9381857361 | manasa.p@gmail.com | PManara |
| P. Manara | TitMSCs | 9381857361 8106219539 | navenaranilpa3 3 gmail com | BNavenarai |
| B. NaveenaRani | III MSCs | 8106219539 9866871283 | reddy pratuibha4os@gmal.com | R.praticisa |
| R. pratkiba | IV MSCS | 9866871283 7702367928 | sisunitha113@gmail.com |  |
| 2. Sunec tha | II msc 8 | 7702367928 | saisunitha113@gmail.com bhoomikareddly 1514 @amail.com | d. Sunceltra |
| Bhoomika | IIImscs | 6301630713 | bhoomika reddy 1514@gmail.com | P. Bheomika |
| - Niveditho | III Mascs | $9666.8518 \cdot 3$ | V.niveditha82@gmail.com | V. Newerdu the |
| - Suhasini | III mscs | 8341108139 | KasiRotdysravanthil23@gmail.com | $k$-suhafini |
| Jyothirmai | In HSCs | 9542292917 | Jyothirmai2309mmail.com | PJyolto |
| Shanthy | IImsis | 9182117545 | shanthi2220009gmail.com | Yespunete? |
|  |  |  |  | Dept. of Mathematics St. Joseph's Degree Colle KURNOOL. |



# ST. JOSEPH'S DEGREE COLLEGE, SUNKESULA ROAD, KURNOOL. PG ENTRANCE MODEL EXAM 

## MATHEMATICS

Max time :1 hour 30 minutes
Max Marks : 50
(1) How many elements are there in $\mathbb{Z}[i] /\langle 3+i\rangle$ ?
A) infinite
B) 3
C) 10
D) finite but not 3 or 10
(2) Let $P$ be the set of all $n \times n$ complex Hermitian matrices. Then $P$ is a vector space over the filed of
A) $\mathbb{C}$
B) $\mathbb{R}$ but not $\mathbb{C}$
C) both $\mathbb{R}$ and $\mathbb{C}$
D) $\mathbb{C}$ but not $\mathbb{R}$
(3) Whick one of the following is true?
A) There are infinitely many one-one linear transformations from $\mathbb{R}^{4}$ to $\mathbb{R}^{3}$
B) The dimension of the vector space of all $3 \times 3$ skew-symmetric matrices over the field of real numbers is 6
C) Let $F$ be a field and $A$ a fixed $n \times n$ matrix over $F$. If $T: M_{n}(F) \rightarrow M_{n}(F)$ is a linear transformation such that $T(B)=A B$ for every $B \in M_{n}(F)$, then the characteristic polynomial for $A$ is the same as the characteristic polynomial for $T$
D) A two-dimensional vector space over a field with 2 elements has exactly 3 different basis.
(4) Let $V$ and $W$ be vector spaces over a filed $F$. Let $S: V \rightarrow W$ and $T: W \rightarrow V$ be linear transformations. Then which one of the following is true?
A) If $S T$ is one-to-one, then $S$ is one-to-one
B) If $V=W$ and $V$ is finite-dimensional such that $T S=I$, then $T$ is invertible C) If $\operatorname{dim} V=2$ and $\operatorname{dim} W=3$, then $S T$ is invertible D) If $T S$ is onto, then $S$ is onto.
(5) The order of the automorphism group of Klein's group is
A) 3
B) 4
C) 6
D) 24 .
(6) Which one of the following group is cyclic?
A) The group of positive rational numbers under multiplication
B) The dihedral group of order 30
C) $\mathbb{Z}_{3} \oplus \mathbb{Z}_{15}$
D) Automorphism group of $\mathbb{Z}_{10}$
(7) Which one of the following is a field?
A) An infinite integral domain
B) $\mathbb{R}[x] /\left\langle x^{2}-2\right\rangle$
C) $\mathbb{Z}_{3} \oplus \mathbb{Z}_{15}$
D) $\mathbb{Q}[x] /\left\langle x^{2}-2\right\rangle$.
(8) Which one of the following is true for the transformation $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ defined by $T(f)=f+f^{\prime}+f^{\prime \prime}$ ?
A) $T$ is one-to-one but not onto
B) $T$ is onto but not one-to-one
C) $T$ is invertible
D) the matrix of $T$ with respect to the basis $\left\{1, x, x^{2}\right\}$ is upper triangular.
(9) In $\mathbb{Z}[x]$, the ideal of $\langle x\rangle$ is
A) maximal but not prime
B) prime but not maximal
C) both prime and maximal
D) neither prime not maximal
(10) Which one of the following is true for the transformation $T: M_{n} \rightarrow \mathbb{C}$ defined by $T(A)=\operatorname{tr} A=\sum_{i=1}^{n} A_{i n}$ ?
A) Nullity of $T$ is $n^{2}-1$
B) Rank of $T$ is $n$
C) $T$ is one-to-one
D) $T(A B)=T(A) T(B)$ for all $A, B \in M_{n \times n}$
(11) Let $W_{1}=\left\{A \in M_{n}(\mathbb{C}): A_{i j}=0 \forall i \leq j\right\}$ and $W_{2}$ is the set of symmetric matrices of order $n$. Then the dimension of $W_{1}+W_{2}$ is
A) $n$
B) $2 n$
C) $n^{2}$
D) $n^{2}-n$
(12) The logarithmic map from the multiplicative group of positive real numbers to the additive group of real number is
A) a one-to-one but not an onto homomorphism
B) an onto but not a one-to-one homomorphism
C) not a homomorphism
D) an isomorphism.
(13) If $f$ is a group homomorphism from $(\mathbb{Z},+)$ to $(\mathbb{Q}-\{0\}, \cdot)$ such that $f(2)=1 / 3$, then the value $f(-8)$ is
A) 81
B) $1 / 81$
C) $1 / 27$
D) 27 .
(14) The quotient group $\mathrm{Q}_{8} /\{1,-1\}$ is isomorphic to
A) $(\mathrm{Cs}, \cdot)$
B) $(\{1,-1\}, \cdot)$
C) $\left(V_{4},+\right)$
D) $\left(\mathbb{Z}_{4},+\right)$.
(15) The converse of Lagrange's theorem does not hold in
A) $A_{4}$ the alternating group of degree 4
B) $A_{4} \times \mathbb{Z}_{2}$
C) the additive group of integers modulo 4
D) Klein's four group.
(16) The ring $(R,+, \cdot)$ is an integral domain when $R$ is
A) $M_{2}(\mathbb{Z})$
B) $\mathbb{Z}_{7}$
C) $\mathbb{Z}_{6}$
D) $C[0,1]$ of all continuous functions from $[0,1]$ to $\mathbb{R}$.
(17) The polynomial ring $\mathbb{Z}[x]$ is
A) a field
B) a principal ideal domain
C) unique factorization domain
D) Euclidian domain.
(18) An algebraic number is a root of a polynomial whose coefficients are rational. The set of algebraic numbers is
A) finite
B) countably infinite
C) uncountable
D) none of these.
(19) Let $f: A \rightarrow A$ and $B \subset A$. Then which one of the following is always true?
A) $B \subset f^{-1}(f(B))$
B) $B=f^{-1}(f(B))$
C) $B=f\left(f^{-1}(B)\right)$
D) $B=f\left(f^{-1}(B)\right)$.
(20) Which one of the following does not imply $a=0$ ?
A) For all $\epsilon>0,0 \leq a<\epsilon$
B) For all $\epsilon>0,-\epsilon<a<$ e
C) For all $\epsilon>0, a<\epsilon$
D) For all $\epsilon>0,0 \leq a \leq \epsilon$.
(21) Let $X$ and $Y$ be metric spaces and $f: X \rightarrow Y$ be continuous. Then $f$ maps
A) open sets to open sets and closed sets to closed sets
B) compact sets to bounded sets
C) cornected sets to compact sets
D) bounded sets to compact sets.
(22) Suppose $f:[0,1] \rightarrow \mathbb{R}$ is bounded. Then
A) $f$ is Riemann integrable on $[0,1]$
B) $f$ is continuous on [ 0,1 ] except for finitely many points implies $f$ is Riemann integrable on $[0,1]$
C) $f$ is Riemann integrable on $[0,1]$ implies $f$ is continuous on $[0,1]$
D) $f$ is Riemann integrable on $[0,1]$ implies $f$ is monotone function.
(23) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\sin x^{3}$, then $f$ is
A) uniformly continuous
B) not differentiable
C) continuous but not uniformly continuous
D) not contimuous.
(24) Consider the sequence $\left\langle f_{n}\right\rangle$ defined by $f_{n}(x)=1 /\left(1+x^{n}\right)$ for $x \in[0,1]$. Let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. Then
A) For $0<a<1,\left\langle f_{n}\right\rangle$ converges uniformly to $f$ on $[0, a]$
B) the sequence $\left\langle f_{n}\right\rangle$ converges uniformly to $f$ on $[0,1]$
C) the sequence $\left\langle f_{n}\right\rangle$ converges uniformly to $f$ on $[1 / 2,1]$
D) the sequence $\left\langle f_{n}\right\rangle$ converges uniformly to $f$ on $[0,1]$.
(25) The open unit ball $B((0,0), 1)$ in the metric space $\left(\mathbb{R}^{2}, d\right)$ where the metric $d$ is defined by $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$ is the inside portion of
A) the circle centered at the origin and radius 1
B) the rectangle with vertices at $(0,1),(1,0),(-1,0),(0,-1)$
C) the rectangle with vertices at $(1,1),(1,-1),(-1,1),(-1,-1)$
D) the triangle with vertices $(0,1),(-1,-1),(1,-1)$.

